고급물리:퍼텐셜 에너지
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
===보존력과 비보존력=== 역학적 에너지가 뭔지 안다는 가정. {| class="wikitable" !개념 !설명 |- |비보존력 non-conservative force |역학적 에너지는 기본적으로 보존된다. 보존되지 않는 경우는 마찰, 빛 등으로 인해 에너지를 잃는 경우. 이런 특수한 상황을 위해 정립된 개념.(누가 만들었는지는 모름...ㅜ) 일반적으로 계에서 특정 입자에 일을 하면 그 입자의 운동에너지에 변화가 생긴다. #특정 계가 한 전체 일(중력과 저항력이 떨어지는 물체에 일을 한다든가..)을 <math>W_t</math>라고 하고, 보존력이 한 일을 <math>W_c</math>, 비보존력이 한 일을 <math>W_n</math>이라고 하면 <math>W_t=W_c+W_n=\Delta K</math> #중력과 같은 보존력이 일을 하면 해당 계의 위치에너지가 감소한다. <math>W_c= -\Delta U</math> #다시 정리하면 <math>W_t=-\Delta U + W_n=\Delta K</math> 인데, #<math>W_n=\Delta K +\Delta U</math> 이므로 #비보존력이 역학적 에너지의 변화를 만든다는 것을 알 수 있다. |- |보존력 conservative force |비보존력을 다루면서 주목된 힘. 어떤 경로로 운동하든 처음 자리로 돌아오면 한 일이 0이 되는 힘.(중력, 탄성력, 전기력 등) 처음 위치와 최종 위치만 같으면 되므로, 임의의 경로를 따라 순환적분 한다. <math>\int_{A}^{B} \overrightarrow{F}\cdot d \overrightarrow{r} + \int_{B}^{A} \overrightarrow{F}\cdot d \overrightarrow{r} = \oint \overrightarrow{F}\cdot d \overrightarrow{r} =0</math> 다음과 같은 특성이 있다.(하나를 만족하면 나머지를 무조건 만족한다. 서로에게 필요충분조건.) #보존력이 한 일의 음수값만큼 퍼텐셜에너지의 변화가 나타난다. <math>\Delta U =-\int_{A}^{B} \overrightarrow{F} \cdot d \overrightarrow{r} </math>(보존력이 한 일의 음수만큼 어딘가에 저장.) #경로에 무관하다. 이 특성을 이용하여 가장 간단한 경로를 이용하여 복잡한 운동 문제를 쉽게 풀 수 있다. #시작과 끝점이 같으면 보존력이 한 일은 0. #스톡스 정리에 따라 <math>\oint \overrightarrow{F}\cdot d \overrightarrow{r} = \int_{s}^{} (\bigtriangledown \times \overrightarrow{F})\cdot d\overrightarrow{a}</math> (근데, 이걸 배웠을까...???) |}
요약:
학교의 모든 지식. SMwiki에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
학교의 모든 지식. SMwiki:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
원본 편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보