고급물리:행성의 운동
편집하기 (부분)
둘러보기로 이동
검색으로 이동
경고:
로그인하지 않았습니다. 편집을 하면 IP 주소가 공개되게 됩니다.
로그인
하거나
계정을 생성하면
편집자가 사용자 이름으로 기록되고, 다른 장점도 있습니다.
스팸 방지 검사입니다. 이것을 입력하지
마세요
!
=== 케플러 법칙 === {| class="wikitable" !분류 !질문 !대답 |- | |케플러 제1법칙은 관측만으로 정립된 것인가요? 아니면 증명이 되었나요? |관측만으로 만든거죠. 후에 뉴턴이 증명했고. |- |개념 |면적 속도 일정 법칙을 통해 타원의 넓이를 유도할 수 있을까요. |일정 시간동안 지난 면적을 안 후에, 이를 한 바퀴 주기와 비례식을 세우면... 적분?! |- | |케플러 법칙이 실생활에서 어떻게 사용되나요? |잘난척. |- | |케플러 법칙으로 행성 두 개서의 운동 뿐만아니라 3개 이상의 행성들의 운동도 설명할 수 있나요? 그 방법이 궁금합니다. |케플러법칙은 행성의 움직임을 표현한거지, 설명한거라 보긴 어렵지 않나요;;? 설명은 만유인력이 하는거지. |- | |지구가 태양 주위를 도는 공전궤도는 타원형이지만, 거의 원형에 가깝다고 알고 있습니다. 그렇다면 다른 별과 행성 사이의 공전궤도도 그렇게 거의 원형에 가까운지, 공전궤도의 모양을 결정짓는 요인에 질량의 비가 들어가는 지, 만약 그렇다면 질량과 긴반지름과 짧은 반지름 사이에는 어떠한 관계가 있는 지가 궁금합니다. |모두 원형에 가까운 타원입니다. 저도 옛날엔 거의 원형에 가깝다는 게 정말 신기했는데... 지금은 당연하게 받아들여지더라구요. 왜냐하면... 원형이 아닌 것들은 다 죽었어. 진화와 비슷하죠? 긴반지름과 짧은반지름의 직접적인 관계는 없습니다. 초기조건이 어떠했는지에 따라 달라질 뿐. |- | |케플러가 법칙들을 발견했을 때는 미적분이 없었는데 면적 일정의 법칙을 어떻게 증명하였는지, 그리고 적분 외에 방법으로 증명하면 매우 엄밀하지는 못했을 것 같은데 당시 과학계에서 어떻게 받아들여졌는지 궁금합니다. |나도 그게 굉장히 궁금해. 위에서 소개했었쬬. 조사해 알려주면 세특. |- | |궤도를 케플러 법칙으로 나타내었을때 우리가 도는 행성이나 항성의 위치가 초점에 있다고 하는데, 항성의 위치에 따라 중력을 다르게 받을 것인데 어떻게 그렇게 돌 수 있는지, 그리고 만약 같은 질량의 쌍둥이의 항성이나 행성이 초점에 각각 있다면 어떻게 될 것인지 궁금합니다. |나중에 극좌표계에 대해 배우면 알게 되고, 쌍중이 행성...에 대해선 선생님도 잘 모르겠네요. 조사해서 알려주면 세특. |}
요약:
학교의 모든 지식. SMwiki에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-비영리-동일조건변경허락 라이선스로 배포된다는 점을 유의해 주세요(자세한 내용에 대해서는
학교의 모든 지식. SMwiki:저작권
문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
또한, 직접 작성했거나 퍼블릭 도메인과 같은 자유 문서에서 가져왔다는 것을 보증해야 합니다.
저작권이 있는 내용을 허가 없이 저장하지 마세요!
취소
편집 도움말
(새 창에서 열림)
둘러보기 메뉴
개인 도구
로그인하지 않음
토론
기여
로그인
이름공간
문서
토론
한국어
보기
읽기
편집
원본 편집
역사 보기
더 보기
검색
둘러보기
대문
최근 바뀜
임의의 문서로
미디어위키 도움말
도구
여기를 가리키는 문서
가리키는 글의 최근 바뀜
특수 문서 목록
문서 정보